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Abstract—Two interpolants are described that may be used to correct
the results of a moment-method solution using pulse functions as a basis
and delta functions for testing. The interpolants allow for some of the
variation of the fields within each cell and thereby increase accuracy and
improve convergence. The interpolants are usable for a general scatterer
and typically require about 1 percent of the cost of the initial numerical
solution.

I. INTRODUCTION

OMENT-METHOD solutions for electromagnetic

scattering with a general dielectric object often use
pulse functions as a basis and delta functions for testing
[11-[5]. The object of this paper is to show that an inter-
polant may be used to allow for some of the variation of
the fields within each cell and thereby increase accuracy
and improve convergence. The computational expense of
using the interpolant is typically about 1 percent of the
cost of the initial numerical solution.

A numerical solution using a pulse function basis re-
sults in a single value representing £ within each cell. The
delta functions used for testing enforce the integral equa-
tion at the center of each cell so that the calculated E
values are most representative of the cell centers. Experi-
mental tests have shown that the error in E calculated for
the cell centers is relatively small even when adjacent cells
have values which may differ by an order of magnitude
[6]. Since the values of £ may be assigned to points in
space, interpolation is possible.

The present study has been restricted to piece-wise
interpolation in which the value of the corrected specific
absorption rate (SAR) is calculated for one cell at a time.
In this paper, two interpolants that have been developed
by the authors are described. The triquadratic interpolant
is usable when cell centroids are on a Cartesian product
mesh. The NEWSUD interpolant is useful for problems in
which the cubical cells may have different sizes and
general locations.
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II. TEST OF A ONE-DIMENSIONAL INTERPOLANT

Moment-method solutions with any subsectional basis,
such as pulse functions, require that the scatterer be
approximated by a composite of cells [1]-[5]. Since ana-
lytical solutions for such composites are unknown in
three-dimensional problems, a test of convergence has
been made for a one-dimensional problem.

Consider the one-dimensional problem of a plane wave
polarized in the x direction incident upon a dielectric slab
which extends from z=0 to z=a. The electric field is
described by a scalar integral equation:
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where z and z’ are coordinates of the observation point
and source point, respectively, p is the distance between
the two points, E} and E, are the incident and total
electric-field intensity, respectively, with ¢/’ time depen-
dence, €,(z’) is the complex permittivity at the source point
relative to free space, and ky=wV pye,.

The discrete analogue of (1) consists of the N-by-N
system of linear equations:

N )
where the dielectric is partitioned into N cells which are
thin slabs, and » and m are indices for the cells.

The matrix elements are readily evaluated using (1) with
the procedure in [2]:
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where A is the thickness of each cell and p,, is the
distance between the centers of the mth and nth cells.

The analytical solution for a homogeneous dielectric
slab is given by
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Fig. 1. Calculated average specific absorption rate for a 2-cm thick
layer of muscle at 2450 MHz. Incident power density is 1 MW /cm?,
er, =50, 0=2.2 mho/m.

Fig. 1 gives the average SAR for a 2-cm thick layer of
muscle at 2450 MHz for three different computational
procedures. The analytical value was found by integration
of 1/2 oF- E* using (5). Numerical solutions were ob-
tained using (2)-(4). Numerical values without the inter-
polant were found by averaging 1/2 ¢ E-E* for each cell.
Numerical values were also obtained by using a piece-wise
quadratic interpolant [7] to obtain an expression for E
within each cell and then integrating the expressions for a
volume average of 1/2 ¢ E-E*.

It is readily seen in Fig. 1 that the interpolant causes a
significant improvement in convergence to the known
analytical solution. We may relate the improvement in
convergence to the well-known preference of Simpson’s
rule to the trapezoidal rule for numerical quadrature.
Simpson’s rule requires fitting a piecewise quadratic
through the data points and generally gives a better ap-
proximation of the integrand function for greater ac-
curacy than the trapezoidal rule.

IIL

We have developed a triquadratic interpolant which
may be used when the cell centroids are on a Cartesian
product mesh. As the name suggests, quadratic interpola-
tion is used parallel to each of the three Cartesian axes.

A total of 27 cells is used in the stencil for each
calculation. Fig. 2 shows the location of the 26 cells
surrounding the cell in which the correction is made. The
Cartesian product is shown for X=-1,0,1, Y=-1,0, 1,
Z=—1, 0, 1, but scaling is readily used to adjust to a
specified cell size.

Quadratic interpolation may be used with univariate
data for the function F(X) at the three points X =—1,0, 1
by the rule

TRIQUADRATIC INTERPOLANT

F(X)=F(~ 1)%(){— 1)+ FO)(1 - X)

(LX) + FI) 3 (X+1). (6)
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Fig. 2. Location of cells in stencil for the triquadratic interpolant.

Triquadratic interpolation may be performed on the sten-
cil shown in Fig. 2 by using products formed from three
univariate interpolants. For example, the contribution of
the function value at X=—1, Y= — 1, Z=0 (cell number
2)is

F(=1,-1,0 3 (X=1)5-(Y=1)(1-Z)(1+2).

Triquadratic interpolation as described in the last para-
graph is only usable for corrections in a cell surrounded
by 26 other cells, as shown in Fig. 2. It is possible to use a
single interpolation rule based on the full 27-cell stencil if
E values are estimated for unoccupied positions by means
of a series of fill-in rules. We have used the following
series of rules in which the E values are filled in the order
of increasing distance from the central cell by averaging E
values known in adjacent cells.

1) Fill in the six closest cells (numbers 5, 11, 13, 15, 17,
23). If any are unoccupied, use the value of E in the
central cell.

2) Fill in the twelve next closest cells (numbers 2, 4, 6, 8,
10, 12, 16, 18, 20, 22, 24, 26). If any are unoccupied, use
one-half the sum of E for the pair from the six closest cells
of part 1 which share a face with the unoccupied cell.

3) Fill in the eight corner cells (numbers 1, 3, 7, 9, 19,
21, 25, 27). If any are unoccupied, use one third the sum
of E for the three cells sharing a face with the unoccupied
cell.

Application of triquadratic interpolation to the general
scatterer requires the following calculations be made for
each cell. First, a sieve is used to find which of the 26
surrounding cells are occupied. Next, the fill-in rules are
used as required to complete the- stencil. Finally, the
triquadratic interpolant is used to evaluate the integral of
1/2 o E-E* over the central cell. If the cells have different
complex permittivities, both the fill-in and interpolation
rules must be modified by suitably multiplying by the
ratio of permittivities so that the interpolant has both D
normal and E tangential to each boundary continuous.
We have made such modifications and have used inter-
polation in solutions for inhomogeneous dielectric
scatterers.

Since analytical solutions are not avaxlable for arrays of
cubes, a standard for evaluating results obtained by
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Fig. 3. Calculated average specific absorption rate for a 12-cm cube of
muscle at 1 MHz without interpolation. Incident power density is 1
MW /cm?, er,=2000, ¢ =0.556 mho/m.

TABLE I
ERROR IN CALCULATED AVERAGE SPECIFIC ABSORPTION RATE
FOR A 12-cm CUBE OF MUSCLE AT 1 MHz. ¢,; =2000, 6 =0.556
mho/m

Number Error Error

of Cells Without Interpolant With Interpolant
1 ~44.6% -44. 6%
8 -37.4% -34.4%
27 —~26.37% -20.9%
64 -20.2% -15.4%

216 -13.5% -9.01%

512 -10.1% -5.89%

numerical methods is not easily obtained, but one conver-
gence test has been made for the triquadratic interpolant.
Fig. 3 gives the average specific absorption rate calculated
without interpolation for a 12-cm cube of muscle with
plane wave at 1 MHz normally incident on one face.
Linear convergence is demonstrated in the figure. Ex-
trapolation using the values for 216 and 512 cells gives an
SAR of 0.3275 X% 10~ W /kg for an incident power density
of 1 MW /cm? Table I gives the estimated errors in SAR
without interpolation and with the triquadratic interpolant
found by comparison with the extrapolated value of SAR.
Results in Table I suggest that the triquadratic interpolant
causes a significant improvement in convergence.

IV. NEWSUD INTERPOLANT

We have developed the NEWSUD interpolant which
may be used when the cells have different sizes and/or
arbitrary placement. The NEWSUD interpolant is more
general than the triquadratic interpolant and does not
require fill-in rules but is limited to linear rather than
quadratic correction. The name NEWSUD is an acronym
of the words “north,” “east,” “west,” “south,” “up,” and
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Fig. 4. Configuration for linear interpolation in the NEWSUD
method.

“down” since the stencil contains only one cell near each
of the six faces of a central cube for calculations within
that cube.

When the NEWSUD interpolant is used for calcula-
tions within a cell, first, one imaginary plane is passed
through each edge of the cube and the cell centroid. The
planes divide the cube into six congruent pyramids as well
as dividing the exterior into six corresponding solid an-
gles. Next, each solid angle is searched to find a cell
centroid as close as possible to the interpolated cube.
Interpolation is performed separately in each of the six
pyramids using only the centroids of the interpolated cube
and corresponding external cell. If a solid angle does not
contain an external cell centroid within a reasonable dis-
tance, say one side of the central cell or less, the uninter-
polated value of E is used within the corresponding
pyramid.

The configuration for linear interpolation within a
pyramid in the NEWSUD method is shown in Fig. 4. The
point at which interpolation is desired (X, Y, Z), the
centroid of the external cell (X,, Y,, Z,), and the centroid
of the interpolated cell which is used as the origin de-
termine a plane which is used for the figure.

The equation of the plane perpendicular to the line
connecting (X;, Y;, Z,) to the origin and passing through
the point (X, Y, Z) is

XX, + YY1+ZZI=a\/X12+ Y+ Z? @)

where a is the distance from the origin to the plane. The
linear interpolation used in the NEWSUD method when
an external cell is found corresponding to a pyramid of
the interpolated cell is accomplished by the approxima-
tion of identifying E(X Y, Z) with E(X ’, Y’, Z’) so that

aE(X19 Y,Z,)
\/X,2+ Y2+ Z}

1—

E(X,Y,Z)=

a

+ E(0,0,0). (8)

Linear interpolation defined by (7) and (8) is used to
evaluate the integral of 1/2 ¢ E-E* in a pyramid for
which a corresponding external cell is found. If the cells
have different complex permittivities, (8) must be mod-
ified by suitably multiplying by the ratio of permittivities
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Fig. 5. An improved model of man for numerical calculations.
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Fig. 6. Whole-body SAR for a homogeneous model of man. E||£, i
front-to-back, incident intensity =1 MW /em?.

so that both D normal and E tangential to a boundary are
continuous.

Fig. 5 illustrates a model of man which has been used
for numerical calculations [8]. Moment-method solutions
have been made for the mode! using pulse functions as a
basis and delta functions for testing. The NEWSUD inter-
polant has been used in calculations since the model has
cells which are cubes of different sizes. Fig. 6 shows the
frequency dependence of the average SAR calculated for
the model of man with a vertically polarized plane wave
having frontal incidence. Values found both with and
without interpolation are given.

If the local E values are exact samples and if there is
appreciable variation between adjacent cells, then statisti-
cal procedures may be used to calculate confidence limits
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Fig. 7. Correction to whole-body SAR for homogeneous model of
man.

for values of the average SAR found without aid of
interpolants [9]. The 80-percent confidence half widths for
average SAR values have been calculated and plotted in
Fig. 7. The percent correction which the NEWSUD inter-
polant makes is also shown in Fig, 7. ~

The frequency-dependent variation of the true E must
cause increasing error in calculations of local E at
frequencies greater than 200 MHz for the cell sizes used
with the model of man [10]. The 80-percent confidence
half widths shown in Fig. 7 are not valid at frequencies
above 200 MHz since their calculation requires the
assumption that the local E values are exact samples. Fig.
7 shows that the NEWSUD interpolant makes relatively
little correction to the SAR at low frequencies where
relatively little error is expected, but the correction in-
creases sharply at frequencies for which the error is ex-
pected to increase.

V. CONCLUSIONS

The interpolative correction to calculated values of the
average SAR has been tested in a one-dimensional prob-
lem in which the analytical solution is available for com-
parison with numerical solutions. A test was also made in
a three-dimensional problem in which the true solution
was estimated by extrapolation. In both tests the inter-
polant makes small corrections when few cells are used
since sampling is insufficient to allow proper estimation of
the variation of the fields. The fractional correction is also
observed to decrease as many cells are used since the
interpolated and uninterpolated solutions must converge
to the same answer. In both tests the interpolant was
found to provide a significant reduction in error for a
negligible increase in computational expense.

It is hoped that the two interpolants presented in this
paper are only the first steps in the development of a
procedure which will find general usage as a follow-up to
moment-method solutions. Use of the interpolant for
calculation of the external scattered fields and develop-
ment of a general interpolant consistent with the wave
equation appear to be the next necessary steps.
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Aperture Excitation of a Wire
in a Rectangular Cavity

DAVID B. SEIDEL, MEMBER, IEEE

Abstract—The problem of determining the currents excited on a wire
enclosed within a rectangular cavity is considered. The wire and cavity
interior are excited by electromagnetic sources exterior to the cavity which
couple to the cavity interior through a small aperture in the cavity wall. It
is assumed that the wire is thin, straight, and oriented perpendicular to one
of the cavity walls. An integral equation is formulated for the problem in
the frequency domain using equivalent dipole moments to approximate the
effects of the aperture. This integral equation is then solved numerically by
the method of moments. The dyadic Green’s functions for this problem are
difficult to compute numerically; consequently, extensive numerical analy-
sis is necessary to render the solution tractable. Sample numerical results
are presented for representative configurations of cavity, wire, and aper-
ture,

I. INTRODUCTION

N INVESTIGATION has been undertaken of the

problem of a wire inside a cavity which is excited by
an external source. The effects of this external source are
coupled to the cavity interior and wire through an aper-
ture in the cavity wall. The currents excited upon the wire
and the fields within the cavity are to be determined. This
boundary-value problem is an idealization of a wire in
some metal enclosure. As examples, the wire may be
inside the shielding or housing of an electronic or
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mechanical unit, or it might simply pass from one metal
partition to another through a region which is essentially
empty.

Previously, the shielding effects of infinite cylindrical
structures have been treated often, i.e., [1}, [2]. Recently,
the problems of penetration through an aperture into a
spherical cavity [3] and into a cylindrical cavity [4] also
have been considered. However, the author is not aware
of any previous work which treats the subsequent interac-
tion with scatterers (such as wires) within a cavity.

II. FORMULATION OF PROBLEM

For purposes of this problem, consider a perfectly con-
ducting rectangular cavity as shown in Fig. 1. One corner
of this cavity is located at the origin of a Cartesian
coordinate system. The dimensions of the cavity are de-
noted by a, b, and ¢, in the x, y, and z directions,
respectively. Within this cavity, there is a perfectly con-
ducting, round, thin wire of radius r (r<A) which is
assumed to be parallel to the z axis. The ends may or may
not be attached to either or both walls of the cavity.

One of the walls of the cavity is perforated by a small
aperture whose center is located at 7,=(x,,y,z,). The
exterior region to which the aperture couples the cavity
interior may be of two different types. The cavity may be
located behind an infinite, perfectly conducting, planar
screen such that the cavity wall containing the aperture is
a portion of the infinite screen. Alternatively, the cavity
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