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Abstract—Two interprdants are deseribed that may be used to correct
the results of a moment-method solution using putse fnnetions as a basis

and delta fnnetious for testing. The iuterpolauts allow for some of the
variation of the fields within each eelt and thereby increase accuracy and

improve convergence. The iuterpolants are usable for a general scatterer

and typically require about 1 percent of the cost of the irdtiaf nnmerkal
sdntion.

I. INTRODUCTION

M OMENT-METHOD solutions for electromagnetic

scattering with a general dielectric object often use

pulse functions as a basis and delta functions for testing

[1]-[5]. The object of this paper is to show that an inter-

polant may be used to allow for some of the variation of

the fields within each cell and thereby increase accuracy

and improve convergence. The computational expense of

using the interpolant is typically about 1 percent of the

cost of the initial numerical solution.

A numerical solution using a p~se function basis re-

sults in a single value representing E within each cell. The

delta functions used for testing enforce the integral equa~

tion at the center of each cell so that the calculated E

values are most representative of the cell ~enters. Experi-

mental tests have shown that the error in E calculated for

the cell centers is relatively small even when adjacent cells

have values which may ~ffer by an order of magnitude

[6]. Since the values of E may be assigned to points in

space, interpolation is possible.

The present study has been restricted to piece-wise

interpolation in which the value of the corrected specific

absorption rate (SAR) is calculated for one cell at a time.

In this paper, two interpolants that have been developed

by the authors are described. The triquadratic interpolant

is usable when cell centroids are on a Cartesian product

mesh. The NEWSUD interpolant is useful for problems in

which the cubical cells may have different sizes and

general locations.
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IL TEST OF A ONE-DIMENSIONAL INTERPOLANT

Moment-method solutions with any subsectional basis,

such as pulse functions, require that the scatterer be

approximated by a composite of cells [ 1]–[5], Since ana-

lytical solutions for such composites are unknown in

three-dimensional problems, a test of convergence has

been made for a one-dimensional problem.

Consider the one-dimensional problem of a plane wave

polarized in the x direction incident upon a dielectric slab

which extends from z = O to z = a. The electric field is

described by a scalar integral equation:

jkO
Ex(z) = E;(z) – — ~a(tr(zf) – l) EX(z’)e-~~Opdz’ (1)

2~

where z and z’ are coordinates of the observation point

and source point, respectively, p is the distance between

the two points, E; and Ex are the incident and total

electric-field intensity, respectively, with d“t time depen-

dence, c,(z’) is the complex permittivity at the source point

relative to free space, and kO-o%

The discrete analogue of (1) consists of the N-by-N

system of linear equations:

~~14A%= -E:m, m=l,2,..., N (2]

where the dielectric is partitioned into N cells which are

thin slabs, and n and m are indices for the cells.

The matrix elements are readily evaluated using (1) with

the procedure in [2]:

Am. = 1 + (c,~ – 1)(1 – e ‘~k@/2) (3)

kQA

()
A~~ =j(crn – l)e-Jk@-- sin ~ , rrr+n (4)

where A is the thickness of each cell and pmn is the

distance between the centers of the rnth and nth cells.

The analytical solution for a homogeneous dielectric

slab is given by

Ex(z)

= E~(0)[2< cos ~ kO(a–z)+2j sin ~ k,(a–z)]

2~ cos < kOa +j( 1 + c,) sin ~ kOa “

(5)
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Fig. 1. Calculated average specific absorption rate for a 2-cm thick
layer of muscle at 2450 MHz. incident power density is 1 MW/cm2,
w,= 50, 0 =2.2 xnho/m.

Fig. 1 .givesthe average SARfora 2-cm thick layer of

muscle at 2450 MHz for three different computational

procedures me analytical value was found by integration

of 1/2 oE.E* using (5). Numerical solutions were ob-

tained using (2)–(4). Numerical values -wi~hout the inter-

polant were found by averaging 1/2 u E*E* for each cell.

NumericaJ values were also obtained by using a piece-wis~

quadratic interpolant [7] to obtain an expression for E

within each cell and then integrating the expressions for a

volume average of 1/2 u ,E.*.

It is readily seen in Fig. 1 that the interpolant causes a

significant improvement in convergence to the known

analytical solution. We may relate the improvement in

convergence to the well-known preference of Simpson’s

rule to the trapezoidal rule for numerical quadrature.

Simpson’s rule requires fitting a piecewise quadratic

through the data points and generally gives a better ap-

proximation of the integrand function for greatel~ ac-

curacy than the trapezoidal rule.

III. TIUQUADRATIC INTERPOLANT

We have developed a triquadratic interpolant which

may be used when the cell centroids are on a Cartesian

product mesh. As the name suggests, quadratic interpola-

tion is used parallel to each of the three Cartesian a~es.

A total of 27 cells is used in the stencil for each

calculation. Fig. 2 shows the location of the 26 cells

surrounding the cell in which the correction is made, The

Cartesian product is shown for X = – 1,0, 1, Y= – 1,,0, 1,

Z= – 1, 0, 1, but scaling is readily used to adjust to a

specified cell size,

Quadratic interpolation may be used with univariate

data for the function F(X) at the three points X= – 1,0, 1

by the rule

F(X)= F(–l)$(X–l)+F(0) (l– X)

.(l+X)+F(l);(X+ l). (6)
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Fig. 2. Location of cells in stencil for the triquadratic interpoknt.

Triquadratic interpolation may be performed on the sten-

cil shown in Fig. 2 by using products formed from three

univariate interpolants. For example, the contribution of

the function value at X= – 1, Y= – 1, Z= O (cell number

2) is

F(–l, –l,O):(X–l);(Y– 1)(1 –Z)(l+-Z).

Triquadratic interpolation as described in the last para-

graph is only usable for corrections in a cell surrounded
by 26 other cells, as shown in Fig. 2. It is possible to use a

s@gle interpolation rule based on the full 27-cell stencil if

E values are estimated for unoccupied positions by mea:ns

of a series of fill-in rules. We have used the following

series of rules in which the E values are filled in the orcler

of increasing distance from the central cell by averaging, ~

values known in adjacent cells.

1) Fill in the six closest cells (numbers 5, 11, 1~ 15, 1.7,

23). If any are unoccupied, use the value of E in the

central cell.

2) Fill in the twelve next closest cells (numbers 2,4,6, 8,

10, 12, 16, 18, 20, 2324, 26). If any are unoccupied, use

one-half the sum of E for the pair from the six closest cells

of part 1 which share a face with the unoccupied cell.

3) Fill in the eight corner cells (numbers 1, 3, 7, 9, ‘[9,

21,45, 27), If any are unoccupied, use one third the sum

of E for the three cells sharing a face with the unoccupied

cell.

Application of triquadratic interpolation to the general

scatterer requires the following calculations be made for

each cell. First, a sieve is used to find which of the 26

surrounding cells are occupied. Next, the fill-in rules are

used as required to complete the stencil. Finally, the

triquad~a~c interpolant is used to evaluate the integral of

1/2 u E-E* over the central cell. If the cells have different

complex permittivities, both the fill-in and interpolation

rules must be modified by suitably multiplying by the
ratio of permiitivities so that the interpolant hals both d

normal and E tangential to each boundary continuous.

We have made such modifications and have used inter-

polation in solutions for inhomogeneous dielectric

scatterers.

Since analytical solutions are not available for arrays, of

cubes, a standard for evaluating results obtained by
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Fig. 3. Calculated average specific absorption rate for a 12-cm cube of
muscle at 1 MHz without interpolation. Incident power density is 1
MW/cm2, WI= 2000, u =0.556 &ho/m.

TABLE I
ERROR IN CALCULATED AVERAGE SPECIFIC ABSORPTION RATE

FOR A 12-cm CUBE OF MUSCLE AT 1 MHz. [,1=2000, o= 0.556
mho/m

Number Error Error

of Cells Without Interpolant With Interpolant

1 -44.6% -44.6%

8 -37 .4% -34.4%

27 -26.3% -20.9%

64 -20.2% -15.4%

216 -13.5% -9.01%

512 -10.1% -5.89%

numerical methods is not easily obtained, but one conver-

gence test has been made for ~he triquadratic interpolant.

Fig. 3 gives the average specific absorption rate calculated

without interpolation for a 12-cm cube of muscle with

plane wave at 1 MHz normally incident on one face.

Linear convergence is demonstrated in the figure. Ex-

trapolation using the values for 216 and 512 cells gives an

SAR of 0.3275 x 10-6 W/kg for an incident power density

of 1 MW/cm2. Table I gives the estimated errors in SAR

without interpolation and with the triquadratic interpolant
found by comparison with the extrapolated value of SAR.

Results in Table I suggest that the triquadratic interpolant

causes a significant improvement in convergence.

IV. NEWSUD INTERPOLANT

We have developed the NEWSUD interpolant which

may be used when the cells have different sizes and/or

arbitrary placement. The NEWSUD interpolant is more

general than the triquadratic interpolant and does not

require fill-in rules but is limited to linear rather than

quadratic correction. The name NEWSUD is an acronym

of the words “north,” “east,” “west,” “south,” “up,” and

Fig. 4. Configuration for linear interpolation
method.

in the NEWSUD

“down” since the stencil contains only one cell near each

of the six faces of a central cube for calculations within

that cube.

When the NEWSUD interpolant is used for calcula-

tions within a cell, first, one imaginary plane is passed

through each edge of the cube and the cell centroid. The

planes divide the cube into six congruent pyramids as well

as dividing the exterior into six corresponding solid an-

gles. Next, each solid angle is searched to find a cell

centroid as close as possible to the interpolated cube.

Interpolation is performed separately in each of the six

pyramids using only the centroids of the interpolated cube

and corresponding external cell. If a solid angle does not

contain an external cell centroid within a reasonable dis-

tance, say one side ~f the central cell or less, the uninter-

polated value of E is used within the corresponding

pyramid.

The configuration for linear interpolation within a

pyramid in the NEWSU13 method is shown in Fig. 4. The

point at which interpolation is desired (X, ~ Z), the

centroid of the external cell (Xl, Y], 21), and the centroid

of the interpolated cell which is used as the origin de-

termine a plane which is used for the figure.

The equation of the plane perpendicular to the line
connecting (Xl, Yl, 21) to the origin and passing through

the point (X, Y Z) is

xx* + YY, + Zz, = ~x- (7)

where a is the distance from the origin to the plane. The

linear interpolation used in the NEWSUD method when

an external cell is found corresponding to a pyramid of

the interpolated cell is accomplished+ by the approxima-

tion of identifying E(X, Y, Z) with E(X’, Y’, Z’) so that

E(x, Y,z) =
CLE(xl, Y,, Z1)

‘[%+=ZIZ(o’o’‘8)
Linear interpolation defined b~ (~ and (8) is used to

evaluate the integral of 1/2 u E-E* in a pyramid for

which a corresponding external cell is found. If the cells

have different complex permittivities, (8) must be mod-

ified by suitably multiplying by the ratio of permittivities
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Fig. 5. An improved model of man for numerical calculations.

Fig. 6. Whole-body SAR for a homogeneous model of man. ~ 11~, ~
front-to-back, incident intensity = 1 MW/cm2.

so that both ~ normal and ~ tangential to a boundary are

continuous.

Fig. 5 illustrates a model of man which has been used

for numerical calculations [8]. Moment-method solutions

have been made for the model using pulse functions as a

basis and delta functions for testing. The NEWSUD inter-

polant has been used in calculations since the model has

cells which are cubes of different sizes. Fig. 6 shows the

frequency dependence of the average SAR calculated for

the model of man with a vertically polarized plane wave

having frontal incidence. Values found both with and

without interpo~ation are given.

If the local E values are exact samples and if there is

appreciable variation between adj scent cells, then statisti-
cal procedures may be used to calculate confidence limits

‘?
-10$ 102 —--70’

Fig. 7. Correction to whole-body SAR for lhomogeneous model of
man.

for values of the average SAR found without aid of

interpolants [9]. The 80-percent confidence half widths for

average SAR values have been calculated and plotted in

Fig. 7. The percent correction which the NEWSIJD inter-

polant makes is also shown in Fig. 7.

The frequency-dependent variation of the true ~ ~ust

cause increasing error in calculations of local E at

frequencies greater than 200 MHz for the cell sizes used

with the model of man [10]. The 80-percent confidence

half widths shown in Fig. 7 are not valid at frequencies

above 200 MHz since <heir calculation requires the

assumption that the local E values are exact samples. Fig.

7 shows that the NEWSUD interpolant makes relatively

little correction to the SAR at low frequencies where

relatively little error is expected, but the correction in-

creases sharply at frequencies for which the error is ex-

pected to increase.

V. CONCLUSIONS

The interpolative correction to calculated values of the

average SAR has been tested in a one-dimensional prcib-

lem in which the analytical solution is available for com-

parison with numerical solutions. A test was also made in

a three-dimensional problem in which the true solution

was estimated by extrapolation. In both tests the intm-

polant makes small corrections when few cells are used

since sampling is insufficient to allow proper estimation of

the variation of the fields. The fractional correction is also

observed to decrease as many cells are used since the

interpolated and uninterpolated solutions must converge

to the same answer. In both tests the interpo]ant was

found to provide a significant reduction in error for a

negligible increase in computational expense.

It is hoped that the two interpolants presented in this

paper are only the first steps in the development of a

procedure which will find general usage as a follow-up to

moment-method solutions. Use of the interpolant I’or

calculation of the external scattered fields andl develop-

ment of a general interpolant consistent with the wave

equation appear to be the next necessary steps.
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Aperture Excitation of a Wire
in a Rectangular Cavity

DAVID B. SEIDEL, MEMBER, IEEE

Abstract-The problem of determining the currents excited on a wire

enclosed within a rectangular cavity is considered. The wire and cavity
interior are excited by electromagnetic sources exterior to the cavity which
couple to the cavity interior throngh a small aperture in the cavity waft. It
is assumed that the wire is thin, strsigh~ and oriented pcrpendicufar to one
of the cavity wafls. An inte~al equation is formulated for the problem in
the frequency domain using eqoivafent dipole moments to approximate the
effects of the aperture. This integrsf equation is then solved rmmericsffy by

the method of moments. The dyadic Green’s furrctiom for this problem are
difficult to compute numerically; consequently, extensive nmnerfcaf analy-

sis is necessary to render the solution tractable. SsmpIe rmrnerieaf remfts

are presented for representative configurations of cavity, wire, and aper-

ture

1. INTRODUCTION

A N INVESTIGATION has been undertaken of the
problem of a wire inside a cavity which is excited by

an external source. The effects of this external source are

coupled to the cavity interior and wire through an aper-

ture in the cavity wall. The currents excited upon the wire

and the fields within the cavity are to be determined. This

boundary-value problem is an idealization of a wire in

some metal enclosure. As examples, the wire may be

inside the shielding or housing of an electronic or

Manuscript received October 21, 1977; revised March 1, 1978. This
work was supported by the Air Force Office of Scientific Research Air
Force Systems Command, USAF, under Grant AFOSR 76-3009.

The author was with the University of Arizona, Tucson, AZ. He is
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mechanical unit, or it might simply pass from one metal

partition to another through a region which is essentially

empty.

Previously, the shielding effects of infinite cylindrical
structures have been treated often, i.e., [1], [2]. Recently,

the problems of penetration through an aperture into a

spherical cavity [3] and into a cylindrical cavity [4] also

have been considered. However, the author is not aware

of any previous work which treats the subsequent interac-

tion with scatterers (such as wires) within a cavity.

II. FORMULATION OF PROBLEM

For purposes of this problem, consider a perfectly con-

ducting rectangular cavity as shown in Fig. 1. One corner

of this cavity is located at the origin of a Cartesian

coordinate system. The dimensions of the cavity are de-

noted by a, b, and c, in the x, y, and z directions,

respectively. Within this cavity, there is a perfectly con-

ducting, round, thin wire of radius r (r<<A) which is

assumed to be parallel to the z axis. The ends may or may

not be attached to either or both walls of the cavity.

One of the walls of the cavity is perforated by a small

aperture whose center is located at 7.=(x y z ). Thea, a, a
exterior region to which the aperture couples the cavity

interior may be of two different types. The cavity may be

located behind an infinite, perfectly conducting, planar

screen such that the cavity wall containing the aperture is

a portion of the infinite screen. Alternatively, the cavity
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